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In this work I present a condensed, but self-contained review of the categorical 
formulation of order structures, and the induced equivalence of the categories of 
closure spaces and complete atomistic lattices. 

1. INTRODUCTION 

Since their introduction in analysis by E. H. Moore and F. Riesz (E. H. 
Moore, 1909; Riesz, 1909) closure operators have found applications in many 
areas, such as logic (Hertz, 1922; Tarski, 1929) and topology (Kuratowski, 
1922; Cech, 1937). Of particular interest in a closure space are the fixed 
points of the closure operator, for example, the deductive closure of a set of 
axioms or the closed subsets of a topological space. Now it turns out that 
the collection of these fixed points forms a complete lattice with respect to 
the inclusion order, whose greatest lower bound is just the intersection (Baer, 
1959; Everett, 1944; Monteiro and Ribeiro, 1942; Ore, 1943a,b; Riguet, 1948; 
Ward, 1942). One is then led to a range of equivalences between particular 
classes of closure operators and particular types of lattices. 

In this work I shall present a survey of the categorical structures underly- 
ing these equivalences. There are several motivations for an abstract synthesis 
of such reasonably well known results. First of all, it provides especially 
transparent examples of many standard categorical notions which, to the 
uninitiated, often seem rather obscure in their full generality. Second, it 
exhibits in an interesting way the structural features which lie at the origin 
of properties such as the meet-closedness of the fixed point lattice of a closure 
operator. Finally, and most importantly, the categorical constructions to be 
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presented in the following find a direct application to many specific problems 
of physical and mathematical interest. 

For example, any physical system can be represented by its property 
lattice, a complete atomistic orthocomplemented lattice, or by its state space, 
a set together with an orthogonality relation. Explicitly, we have that a < b 
if b is actual whenever a is actual; in other words, the partial order is physical 
implication with respect to actuality. On the other hand, we have that %1 3- 
%2 if there exists a definite experimental project which is certain for %1 and 
impossible for %2; in other words, two states are orthogonal if they can be 
sharply distinguished. Further, the descriptions of a system in terms of its 
state space and property lattice are physically dual: to each property we can 
associate the set of states for which it is actual; and to each state we can 
associate the set of all of its actual properties. The standard axioms then 
assure that these correspondences are faithful: states correspond exactly to 
atomic properties; properties correspond exactly to biorthogonal sets of states 
(Aerts, 1982; Piron, 1990). The resulting categorical equivalence between 
the two representations then allows a compact characterisation of notions 
such as classical variables (Moore, 1995), observables (Piron, 1976, w 
and maximal deterministic evolutions (Faure et al., 1995). 

On the other hand, a matroid is defined to be a simple algebraic closure 
operator satisfying an exchange condition. A special case of some importance 
is that of projective geometries, exactly matroids whose associated fixed 
point lattice is modular (Faure and FrOlicher, 1996). Here a detailed categorical 
study has led to a deep generalization of the fundamental representation 
theorem to cover general semilinear maps and Hermitian forms (Faure and 
FrOlicher, 1993, 1994, 1995). First, fixing a hyperplane H of the Arguesian 
projective geometry G, one can embed G as a hyperplane in the projective 
geometry G of endomorphisms of G with axis H. Then, defining V = G\G 
and fixing a point 0 ~ V, one can prove that V is a vector space over a 
division ring whose multiplicative group is the set of isomorphisms of G 
with center 0, and that G is isomorphic to the set of rays of V. Second, one 
can prove that any nondegenerate morphism f.- G~\K~ ~ G2 can be extended 
to a morphism f :  G~\K~ --~ G2, which restricts to a semilinear map A: 
V~ ~ V2 with respect to the division ring homomorphism s defined by f o 
h = s (h) o h. Finally, an orthogonality relation 3_ on the projective geometry G 
induces a morphism h: G ~ G* into the dual geometry, whose corresponding 
semilinear map f :  V ~ V* defines a definite Hermitian form on V. 

The rest of this work is organized as follows. In Section 2, I provide 
the necessary definitions of category theory; for more details see, for example, 
Ad~mek et al. (1990), Borceux (1994) or Mac Lane (1971). In Section 3, I 
discuss the categorical formulation of general order structures. Finally, in 
Section 4, I introduce closure operators and their fixed point lattices, before 
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defining equivalent categories of complete atomistic lattices and closure 
spaces in Section 5. 

2. CATEGORY THEORY 

In terms of its application to the concrete structures of physics, category 
theory is perhaps best considered as a hierarchy of object-structure relations, 
with morphisms as relations between objects, functors as relations between 
morphisms, and natural transformations as relations between functors. This 
hierarchy can in fact be formalized by considering (a) the quasicategory of 
categories, whose objects are categories and whose morphisms are functors 
between them, and (b) functor quasicategories, whose objects are functors 
between two fixed categories and whose morphisms are natural transforma- 
tions between them. More importantly, however, the conception of a hierarchy 
of object-structure relations lies at the heart of the very definitions of morph- 
isms, functors, and natural transformations, the imposed conditions being 
nothing more than unicity requirements on induced relations. 

First, let Ob be some class of objects whose structural relations are of 
interest to us, and suppose that for A, B E Ob the structural relations from 
A to B can be collected into a set Hom(A, B). Clearly, identification provides 
a relation from A to itself, and so we are led to require the existence of an 
identity morphism ida ~ Hom(A, A). Further, i f f  relates the objects A and 
B, and g relates the objects B and C, it is natural to suppose that there is an 
induced relation g o f of A to C. We are therefore led to require the existence 
of a composition law for morphisms. Now the intuitive notion of relation is 
indifferent to the order in which we concatenate relations. We are then led 
to postulate that composition be associative. Next, for the intuitive notion of 
identification to be coherent, the relation induced by some morphism f and 
an identification should be f itself. We are then led to postulate that the 
identity morphisms are compositional units. Finally, any structural relation 
involves a unique ordered pair of objects, namely the domain and codomain. 
We are then led to require that the Hom-sets be pairwise disjoint. From this 
point of view, a category is then a quadruple (Ob, Hom, id, o) consisting of: 

(1) a class Ob of objects; 
(2) for each ordered pair (A, B) of objects a set Hom(A, B) of 

morphisms; 
(3) for each object A a morphism ida E Hom(A, A); 
(4) a composition law associating to each pair of morphisms f 

Horn(A, B) and g ~ Horn(B, C) a morphism g o f  ~ Hom(A, C); 
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which is such that: 

(1) h o (g of )  = (h o g) o f  for a l l f  ~ Hom(A, B), g ~ Hom(B, C), 
and h E Hom(C, D); 

(2) id8 o f = f = f o idA for all f E Horn(A, B); 
(3) the sets Hom(A, B) are pairwise disjoint. 

Next, a relation between morphisms should respect the structurally 
important features involved in the concept of morphism. Hence a functor F 
should relate the domain and codomain objects of the initial morphism to 
those of the final morphism. Further, the identity morphisms form a distin- 
guished class, and so should be preserved by any functor. Finally, given two 
morphismsf ~ Hom(A, B) and g ~ Hom(B, C) there are two natural induced 
relations from FB and FB, namely F(g  o f )  and Fg o Ff. Since an induced 
relation should be uniquely specified, we are led to postulate that functors 
preserve composition. From this point of view, a functor from the category 
X to the category Y is then a family of maps F which associates to each 
object A in X an object FA in Y, and to each morphism f ~ Hom(A, B) a 
morphism Ff  ~ Hom(FA, FB), which is such that: 

(1) F ida = idFa for all A E Ob; 
(2) F (g of)  = Fg o F f a l l f  E Horn(A, B) and g ~ Hom(B,C). 

Finally, let F and G be functors from the category X to the category Y. 
Any relation of F to G should induce a relation 0A between the objects FA 
and GA for each object A e Ob (X). Further, given a morphismf  ~ Hom(A, 
B) in X there are two natural relations from FA to GB, namely 0B o Ff  and 
Gf o OA. Once again, since an induced relation should be unique, we are 
led to postulate that the two be equal. From this point of view, a natural 
transformation from the functor F to the functor G is then a map 0 which 
assigns to each object A of X a morphism 0A ~ Hom(FA, GA) in Y, such that 
for each f E Hom(A, B) in X we have that 

OB o Ff  = G f  o OA 

It can be argued that the methodological utility of category theory lies 
in its unified treatment of universal constructions. These can often be per- 
formed at either the local level in terms of morphisms and limits, or the 
global level in terms of functors and adjunctions. For example, the intuitive 
notion of a product can be formalized either locally as an object together 
with a family of projections, or globally as an adjoint of the diagonal functor. 
Explicitly, a diagram in the category X is a functor V from J to X, where J 
is a small category, that is a category with a set of objects. A natural source 
of the diagram V is then an object X in X together with a family of morphisms 
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p j ~  Horn(X, V(j)) ,  which respect the structural constraints encoded in the 
index category J: 

pj = V(t)o Pi V t  ~ Hom(i , j )  

A limit of  the diagram V is a natural source Pi ~ Horn(X, V(j) )  such that 
for any natural source p~ ~ Horn(AS, V(j))  there exists a unique morphism f 

Horn(X, X) such that 

~j = p j o f  

On the other hand, let F be a functor from X to Y, and G be a functor from 
Y to X. Then F is called a left adjoint of G and G is called a right adjoint 
of F, written F q G, if there exist natural transformations 

"q: Idx ---~ G o F, ~: F o G --> Idr 

such that 

eF  o F-q = idF, Ge o "qG = idG 

Note that in this case F preserves colimits, and G preserves limits. Finally, 
if Xl and e are natural isomorphisms, then F and G are said to define an 
equivalence. 

A useful notion in category theory, which will play a central role in the 
following, is that of  a monad on the category X, that is, a triple (T, "fl, ix) 
consisting of (Godement, 1957): 

(1) a functor T from X to X; 
(2) a natural transformation ~q from Idx to T," 
(3) a natural transformation ix from T o T to T," 

which is such that 

ix o Tix = ix o ixT, ix o T'q = idT, ix o "qT = idT 

Monads are in fact closely related to adjunctions. Indeed, let L be a functor 
from X to Y and R be a functor from Y to X, such that L q R via the natural 
transformations "q and r Then one can prove that (R o L, "q, ReL) is a monad 
on X (Huber, 1961). Further, as we shall see next, each monad arises in 
this way. 

First, let (T, "q, ix) be a monad on the category X. A T-algebra on X is 
a pair (A, cx) consisting of an object A ~ Ob(X) and a morphism ot ~ Hom(TA, 
A), which is such that 

ot o "qA = idA, ot o Tot = cx o IXA 
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Let (A, o0 and (B, [3) be T-algebras. A T-morphism from (A, o0 to (B, [3) is 
a morphism f e Hom(A, B), which is such that 

f o c t  = [3o T f  

Then T-algebras together with T-morphisms and the original composition law 
form a category X T, called the Eilenberg-Moore category associated to the 
monad (T, "q, Ix) (Eilenberg and Moore, 1965). For example, the Eilenberg- 
Moore category associated to the word monad on Set  is the category of 
monoids, and the Eilenberg-Moore category associated to the power monad 
on Set is the category of complete join semilattices. Let us define the families 
of maps 

Ur: (A, oO ~ A ; f  ~ f ,  Fr: A ~ (TA, Ixa) , f  ~ T f  

Then U r is a functor from X r to X, and F r is a functor from X to X r. We 
have that U r o F r -- T and F r i- U r. Finally, for a monad of the form T = 
R o L there then exists a unique functor K from Y to X R~ such that 

R = u R o L ~  F R~ = K o L  

Explicitly, 

K: A ~ (RA, RCA); f ~ R f  

On the other hand, let (T, x I, IX) be a monad on the category X and define: 

(1) Ob(Xr) = Ob(X); 
(2) HomT(A, B) = Hom(A, TB); 
(3) ida = "fla'~ 

(4) g o f =  I x c ~ 1 7 6  

Then Xr is a category, called the Kleisli category associated to the monad 
(T, -q, IX) (Kleisli, 1965). For example, the Kleisli categories of monads on 
the category of sets and functions can be identified with algebraic theories, 
that is, theories involving operations on sets constrained by axioms expressed 
as equalities. For a detailed treatment of the relationships between monads, 
theories, and topoi see Barr and Wells (1985). Let us define the families 
of maps 

UT: A ~ TA; f v-* ~L B o Tf, FT: A ~ A; f ~ .rIB o f  

Then (Jr is a functor from XT to X, and FT is a functor from X to XT. We 
have that (Jr o FT = T and Fr  ~- UT. Finally, for a monad of the form T -- 
R o L there exists a unique functor J from XRoL to Y such that 

L = J ~  U R o L = R ~  
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Explicitly, 

J: A ,--, LA; f "-" et,~ ~ L f  

3. ORDER AND CATEGORY 

As already pointed out by Eilenberg and Mac Lane (1945) in their 
foundational paper on category theory, one of the simplest examples of a 
category is a thin category, that is, a category in which each Horn-set contains 
at most one element. As we shall see in this section, such categories are 
nothing more than preordered classes, and functors between them are just 
isotone maps. The notions of product and coproduct then correspond to the 
greatest lower bound and least upper bound, respectively. This leads naturally 
to the notion of a lattice, and in particular to the identification of complete 
lattices with complete thin categories. A consideration of adjunctions in such 
categories then illustrates the importance of join (meet)-preserving maps. 
Indeed, F -t G if and only if F preserves the join, G preserves the meet, and 
the two are related by the standard Galois duality. 

A preorder on the class X is a relation <: which is reflexive and transitive: 

(1) a < a f o r e a c h a  ~ X. 
(2) I f a - < b a n d b <  c, t h e n a < c .  

Recall that a thin category is a category X such that for each ordered pair of 
objects (a, b) there exists at most one morphism in Horn(a, b). 

Lemma 3.1. Preordered classes are in bijective correspondence with 
thin categories. 

Indeed, let us define 

b)}: a < b 
H~ b' = { {la' otherwise 

Then the symmetry of < guarantees the existence of identity morphisms, 
namely ida = (a, a), and the transitivity of < provides a uniquely defined 
associative composition law, namely (b, c) o (a, b) = (a, c). Note that for 
any thin category (X, <)  the opposite category (X, <)0% defined by Ob(X ~ 
= Ob(X) and Hom~ b) = Hom(a, b) = Horn(b, a) with f *  g = g o f,  is 
also thin and so a preordered class. Explicitly, a <op b if and only if there 
exists a morphism f ~ Hom~ b), which is the case if and only if f E 
Horn(b, a), that is, if and only if b < a. 

Recall that a functor from (X~, <~) to (X2, <2) is a family of maps 
which associates to each object a ~ X~ an object Fa ~ x2, and to each 
morphism f :  a ~ b a morphism Ff: Fa ~ Fb, such that Fida = idEa and 
F ( g o f )  = Fgo  F f  
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Lemma 3.2. Functors between the preordered sets (Xt, < j) and (X2, <2) 
considered as thin categories are in bijective correspondence with isotone 
maps F: X~ ~ X2. 

Indeed, if a~ <1 b~, then Fa~ <2 Fb~, since there exists a morphismf:  
al -o  bl, and so a morphism Ff: Fal ~ Fbl. 

Recall that a natural transformation 0: F ~ G is a map which associates 
to each object a~ E X1 a morphism 0a~: Fa~ ~ Gat such that for each 
morphism f :  al --~ bl we have that 0o, o Ff = Gfo Oat. 

Lemma 3.3. There exists a natural transformation 0: F --> G if and only 
if Fal "<2 Gaj for each al ~ Xi. 

Indeed, Fa~ <2 Ga~, since 0al is a morphism from Fa~ to Gat. Note 
that, by the thinness of the category, 0 is uniquely defined if it exists. 

Recall that a product is an object a together with a family of morphisms 
pj: a ~ aj such that for any object ~ and any family of  morphisms pj: a --~ 
a/, there exists a unique morphism f :  ~ --~ a such that ~j = pj o f,  and that 
a coproduct is a product in the opposite category. 

Lemma 3.4. Let (X, < )  be a preordered class considered as a thin 
category, and M C_ X. We have the following results: 

(1) A product FIM, if it exists, is a greatest lower bound of  ~/. 
(2) A coproduct IIM, if it exists, is a least upper bound of  M. 

Indeed, translating the definition of a product in terms of the preorder, 
a is a product if and only if a .< aj for each aj E S~, and for any ~j .< aj 
we have that ~ .< a. The corresponding result for coproducts then follows 
by duality. 

A partial order on the set X is an antisymmetric preorder < :  

(1) a < a f o r e a c h a  ~ X. 
(2) I f a < b a n d b < c ,  t h e n a < c .  
(3) I f a  < b a n d b < a ,  t h e n a  = b. 

A pair (X, <) ,  where X is a set and < is a partial order on X, is called a 
poset. A poset is then nothing more than a small thin category for which no 
two distinct objects are isomorphic. 

There are two reasons for restricting our attention to small categories 
at this stage. The first is convenience: by so doing, we obtain the usual 
category of posets with isotone maps as a subcategory of  the category of 
small categories. For example, the unicity of natural transformations for 
posets implies that the functor category F((Xb < l), (X2, <2)) is also a poset. 
In particular, by taking functor categories as power objects, we then recover 
the well-known Cartesian closedness of the category of posets. The second 
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motivation has more content. In many cases we start with a preordered 
collection which is not a set, but whose induced poset of equivalence classes 
is. A case in point is the collection of possible definite experimental projects 
which could eventually be performed on a given particular physical system. 
Being in no way delimited, this collection does not admit a reasonable 
mathematical characterization. By way of contrast, it is reasonable to suppose 
that the induced collection of properties is well circumscribed and so a set. 

A poset (X, < )  is called a lattice if for all a, b ~ X there exists a greatest 
lower bound a A b and a least upper bound a v b, that is, if finite products 
and coproducts exist. Note that if (X, < )  is a lattice, then so is (X, <)op. 
Indeed, since passing to the opposite category interchanges limits and colimits, 
we have that a h ~ b = a v b and a v ~ b = a ^ b. Further, the category of 
lattices is in fact an algebraic construct, since lattice orders are equationally 
definable. Explicitly, posing 

(1) a ^ b = b A a a n d a v b = b v a ;  
(2) a A ( b ^ c )  = ( a A b )  A c a n d a v ( b v c )  = ( a v b )  v c ;  
(3) a A ( a v b )  = a v ( a A b )  = a; 

we have t h a t a < b i f a n d o n l y i f a ^ b  = a i f a n d o n l y i f a v b =  b. 
A poset (X, < )  is called a complete meet semilattice if the greatest 

lower bound ^ ~  of an arbitrary subset ~ of X exists; or a complete join 
semilattice if the least upper bound v ~  of an arbitrary subset ~ of X exists. 
In fact a poset (X, < )  is a complete meet lattice if and only if it is a complete 
join lattice, with 

v ~  = A{b E XI(Va E ~ )  a < b}, A~ = v{b ~ Xl(k/a ~ ~ )  b < a} 

Recall that a category is called complete if all limits exist. 

Lemma 3.5. Let (X, <)  be a poset. Then (X, < )  is a complete lattice if 
and only if it is complete as a thin category. 

Indeed, the naturality condition on a natural source p] ~ Horn(X, V(j)),  
namely that p] = V(t) o Pi for each index morphism t E Horn(i, j), is redundant 
by the thinness of the category. Hence limits reduce to products of index 
objects. A poset is then complete as a thin category if and only if it has all 
products, that is, if and only if it is a complete lattice. Note that the MacNeille 
completion of a poset, originally defined by Dedekind cuts (MacNeille, 1937), 
is itself categorical, being the injective hull (Banaschewski and Bruns, 1967). 
Further, such initial completions can be defined, although not necessarily 
realized, for any construct (Herrlich, 1976): for example, the category of 
preordered sets is the MacNeille completion of the category of posets 
(Alderton, 1985, 1986). 
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Recall that F q G, that is, F is a left adjoint of G, if and only if there 
exist natural transformations "q: Idxl ~ G o F and r F o G ~ Idx2 such that 
eFoF~I  = i d F a n d G e o ' q G  = i d G .  

Lemma 3.6. Let (XR, <1) and (X2, <2) be posets, and F: Xt ~ X2 and 
G: X2 ~ X1 be isotone maps. Then F q G if and only if al < GFal for each 
ai E XI, and FGa2 < a2 for each a2 ~ X2. 

Indeed, the second condition is nothing more than the requirement that 
there exist the required natural transformations "q: Idx~ ~ G o F and r F o 
G ~ Idx2. Note that this condition is equivalent to the well-known Galois 

duality al < Ga2 if and only if Fal < a2. 
Recall that in any category, if F q G, then F preserves colimits and G 

preserves limits. Translating in terms of the partial order, we then have that 
F preserves the meet and G preserves the join. Further, given solution set 
conditions which turn out to be trivial for thin categories, one can compute 
adjunctions via the adjoint functor theorems. Explicitly: 

Lemma 3.7. Let (Xl, <1) and (X2, <2) be complete lattices, F: XI 
X2 preserve the least upper bound, and G: X2 ~ XI preserve the greatest 
lower bound. Then F q G if and only if 

Ga2 = v{xl E XllFxl < a2}, Fal = ^{x2 ~ X21al < Gx2} 

Note that in any category, if FI q Gi and F2 -t G2, then F2 o Fl -t GI ~ 
G2. In particular, the class of functors having a right (left) adjoint is closed 
under composition. In the context of complete lattices, this is of course 
entirely trivial, being simply the affirmation that the composition of two join 
(meet)-preserving maps is itself join (meet)-preserving. We then recover the 
standard categories of complete join (meet) semilattices. 

Finally, recall that an orthocomplementation on the lattice (X, < )  with 
minimal element 0 is an antitone involution ': X ~ X such that a '  is a 
complement of a: 

(1) a " = a f o r e a c h a  ~ X; 
I .  (2) I f a < b ,  thenb '  < a ,  

(3) a ^ a '  = 0 f o r e a c h a  ~ X. 

In particular, if F -t G, then the map G: a2 '--' (G(a'2))' is join-preserving. 
We then recover the notion of the adjoint of a hemimorphism, introduced 
for orthomodular lattices by Foulis (1960) and developed in, for example, 
Gudder and Michel (1981), Piron (1995), Pool (1968a,b), and Rtittimann 
(1975). 
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4. C L O S U R E  O P E R A T O R S  

For posets~ monads turn out to be nothing more than closure operators. 
For a given monad T the corresponding Eilenberg-Moore category is the 
poset of  fixed points T, and the corresponding Kleisli category is the original 
set with the induced prcorder a < b if and only if a < Tb. Of particular 
importance is the case of  atomistic lattices. In this context it is useful to 
consider simple closure operators, that is, closure operators which map each 
atom to itself. We then obtain equivalent categories of  complete atomistic 
lattices and closure spaces. For a general discussion on the relationship 
between separation conditions on closure spaces and classes of  lattices see 
Faure (1994). 

Let (X, < )  be a poset. A closure operator on (X, < )  is a map T: X --> 
X such that: 

(1) I f a < b ,  t h e n T a <  Tb. 
(2) a < Ta for each a ~ X. 
(3) 7Ta < Ta for each a ~ X. 

Note that T o T = T for any closure operator. Indeed, 7Ta < Ta by (3). 
However  a < Ta by (2), and so Ta < TTa by (1). 

Now it is intuitive to consider the elements a E X as subobjects of  X 
by considering the canonical injections ia: [0, a] --> X. Further, the notion of 
subobject can be adequately defined in any category X with respect to a 
distinguished class At of  monomorphisms which is closed under composition 
and which contains all isomorphisms. Indeed, it suffices to define the class 
At/A of subobjects of  A to be those monomorphisms in At with codomain A. 
The class At/A can then be preordered by setting 

m - < n c = ~ ( 3 j )  n o j = m  

In this way one can define a local closure operator TA for each object A of  
a given category. One can then define a global closure operator on the category 
itself by imposing continuity conditions to relate the different TA (Cagliari 
and Cicchese, 1983; Dikranjan and Giuli, 1987); for a detailed exposition 
see  Dikranjan and Tholen (1995). 

Recall that a monad on the category (X, < )  is a functor T: X --+ X 
together with natural transformations -q: Id ~ T and IX: T o T ---> T, such that 
tx o TIx = Ix o IxT and ~ o T'q = Ix o "qT = idT. 

Lemma 4.1. Closure operators on the poset (X, < )  considered as a thin 
category are in bijective correspondence with monads. 

Indeed, T is a functor, and so an isotone map. Further, the existence of  
a natural transformation rl: Id --> T implies that a < Ta. Finally, the existence 
of a natural transformation Ix: T o T --> T implies that TFa < Ta. 
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Recall that to any monad (T, "q, Ix) on the category X we can associate 
the Eilenberg-Moore category X r, defined as follows. The objects are T- 
algebras, that is, pairs (a, ct), where a is an object in X and ct: Ta ~ a is a 
morphism such that ~ o -i1 a ~--- ida and ~ o T c t =  ct o Ixa- 

Lemma 4.2. Let T be a closure operator on the poset (X, <).  Then the 
associated Eilenberg-Moore category X r is the poset of fixed points of T 
with the induced partial order. 

Indeed, there exists a morphism e:  Ta --4 a if and only if Ta < a, and 
since T is a monad, we have that a < Ta. Hence T-algebras are exactly the 
fixed points of  T. The partial order is the induced one, since all morphisms 
between T-algebras are in fact T-morphisms. 

Recall that for any monad (T, -q, Ix) on the category X, the families of maps 

UT: (a, ~) ,..-, a ; f  "-" f ,  Fr: a ,--, (Ta, Ixa); f "" TF 

are functors, with F r -t U r. Hence, F r preserves colimits, and U r preserves 
limits. Explicitly: 

Lemma 4.3. Let T be a closure operator on the complete lattice (X, <).  
Then the poset (X r, < )  of fixed points of  T is a complete lattice, with 

Ar~  = A~, v ~  = T ( v ~ )  

Note that the fixed point lattice of the closure operator T -- R o L induced 
by an adjunction L q R is just the image of R, since R o L o R = R. 

Recall that an atom of the lattice (X, < )  with minimal element 0 is a 
minimal nonzero element: p :/: 0; and if a < p, then either a = 0 or a = p. 
I write Ex for the (possibly empty) set of atoms of (X, <).  The lattice (X, 
< )  is called atomistic if each element is generated by its atoms: 

a = v{p e E x l p < a }  Va �9 X 

A closure operator T on the atomistic lattice (X, < )  is then called simple if 

(1) TO = 0; 
(2) Tp = p for e a c h p  �9 Ex- 

Lemma 4.4. Let T be a simple closure operator on the complete atomistic 
lattice (X, <).  Then (X T, < )  is atomistic. 

Indeed, the atoms of (X r, < )  are exactly those of (X, <),  and if Ta = 

a, then 

a = Ta = T(v{p �9 ~,xlp < a}) = vr{p �9 Y.xlp < a} 

A closure space is a set Y. together with a simple closure operator T on 
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~X. Note that the atoms of ~ ,  and so of (~y,)r, are exactly the singletons 
{p} for p �9 Y,. To each closure space (Y~, T) one can then associate the 
complete atomistic lattice ((~y,)r, C). The converse is also true: 

L e m m a  4.5. Let (X, <)  be a complete atomistic lattice and define the maps 

ix: X ,..-, ~ X x :  a ,-. {p �9 Xxlp < a} 

"rrx: ~Y~x "-" X: A ~ v A  

Then "rrx 4 ix with corresponding simple closure operator 

ix o "trx: ~Y~x -~ ~Ex: A .-. {p �9 Y, xtp < v A  } 

Indeed, ix and "rrx are both isotone, with 

A = {p �9 2Exlp � 9  C__ {p �9 E x l p < v A }  

= {p �9 Exlp < "rrx(A)} = (ix ~ 'rrx)(A) 

and 

('rrx o ix)(a) = vix(a) = v{p �9 Exlp < a} = a 

It remains to prove that ix o ~ is simple: 

(ix o.trx)(0) = {p �9 Exlp < V0} = {p �9 Exlp < 0} = 0 

(ix o'rr,)({p}) = {q �9 Y~xlq V{P}} = {q �9 Xxlq < p} = {p} 

Note that the elements of ( ~ E x )  i*~ are exactly those A C Ex for which there 
exists an a �9 X with A = {p �9 Xxlp < a}. 

5. CATEGORICAL EQUIVALENCES 

Following the construction of C1.-A. Faure and A. Fr61icher, I now 
introduce equivalent categories of complete atomistic lattices and closure 
spaces based on the above object correspondence. I start by defining morph- 
isms of complete atomistic lattices. 

L e m m a  5.1. Let F: X~ ---> X2 and G: X2 ---> Xl  be functors between 
complete atomistic lattices such that F 4 G. The following are equivalent: 

(1) F(Ex,) C_ Y~x2 U 102}; 
(2) (Vp~ �9 2x,)(gp2 �9 2x 2) p~ < Gp2. 

In this case F will be called a morphism, and G a comorphism. We then 
obtain two dual categories, the equivalent conditions being preserved by 
composition. I now turn to morphisms of closure spaces. 
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Lemma 5.2. Let (E,, T0 and (Y'2, T2) be closure spaces, and f:  EI\KI 
E2 be a partially defined map. The following are equivalent: 

(1) f (TIAt\KI)  C Tzf(Al\Ki)  for each AI _C El. 
(2) If T2A2 = A2 then T 1 (K! U f- l (A2) ) = K 1 U f-l(A2). 

If either, and so both, of these conditions are satisfied, then f is called a 

morphism. For f" E I\KI -"-) Y'2 and g: E2\K2 ----) 5.3, I define 

g of.. Yq\K---) Y~3: Pl ~ g( f (PO),  K = Ki U f- l(K2) 

Note that g o f  is well defined, since i fp t  ~ K, then Pl ~ KI a n d f ( p l )  
K2. We then obtain a category, the conditions being preserved by composition. 

Having established a correspondence between objects, the next step is 
to establish a correspondence between morphisms. Let F: X~ ---) X2 be a 
morphism of complete atomistic lattices, and define 

fl:: Exl\Kl ~ Ex2: Pl ~ F(pl) ,  Kl ----- F - l ( 0 2 )  

Note that fF is well defined, since F maps atoms of Ex~ to either atoms of 
XX2 or 0z. 

Lemma 5.3. fF is a morphism from (Xxl, ix1 o %,0 to (Y~*2, ix2 o 7r~2). 

On the other hand, let f :  5.1\K~ ---) X2 be a morphism of closure spaces, 
and define 

FT: (~ff~l) TI ---) (~Y'z)T2: A 1 ~ T2f(AIVr 

Gf; (~)5.2) T2 ----) (~5.1)TI: A2 ~ Kl kJf-l(A2) 

Lemma 5.4. We have the following results: 

(1) Ff is a morphism of complete atomistic lattices. 
(2) Gy is a comorphism of complete atomistic lattices. 
(3) F: q G:. 

Finally, the above correspondences induce an adjunction. Let us define the 
families of maps 

C: (X,<),--,(Ex, ix~ F ~ f y ,  L: ( E , T ) ~ ( ( ~ ' E ) r , C ) ;  f ,-- ,Ff 

Lemma 5.5. We have the following results: 

(1) C is a functor. 
(2) L is a functor. 
(3) L IC .  
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The two categories are then equivalent, since 

"q~: E ---> CLE:  P ~ {P}, ex: LCX ---> X: A ~ v A 

are isomorphisms, with respective inverses 

"qs C L E  ---> E: {P} ~ P, ~x': X---> LC3~: a ,--, {pip < a} 

For example, an orthogonality relation on the set E is a symmetric and 
antireflexive relation which separates the elements of Y.: 

(1) I f p  I q, then q 3- p. 
(2) p Z p f o r a n y p  e E. 
(3) I f p  :~ q, then there exists r �9 E such that p • r and q Z r. 

Let Z be an orthogonality relation on the set E, and A C_ E. We define 

A • = {q e ~l(Vp � 9  q_l_p} 

The map A ~ A •177 is then a closure operator, since the first condition 
implies that: 

( l )  I f A  C_ B, t henB  • C_A • 
(2) A C_ A •  for each A C_ ~, 
(3) A •177  = A • for each A _C E. 

Further, the second condition implies that the map A ~ A • is an orthocomple- 
mentation on the complete lattice ( (~E)  •177 C_) of biorthogonal subsets of  
E, since 

(4) A f q A  • = O. 

Finally, the third condition implies that each singleton is biorthogonal, so that 
A ~ A _El is a simple closure operator. In particular ( (~E)  •  C_) is atomistic. 

To each orthogonal space we can then associate a complete atomistic 
orthocomplemented lattice. The converse is also true. Indeed, given an ortho- 
complementation ' on the complete atomistic lattice (X, < )  we define p 3_ q 
if and only if p < q' .  In particular, we have that: 

(1) A • = {q �9 Exlq < ( v A ) ' }  for eachA C_ Y~x. 
(2) {p e E~lp < a} l = {q ~ Exlq < a '} for each a �9 X. 
(3) A C_C_ Ex is biorthogonal if and only i fA  = {p e Exlp < v A } .  

The categories of  complete atomistic orthocomplemented lattices and orthog- 
onal spaces are then equivalent. 
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